Designing Multicores for Programmability:
The Bulk Multicore Architecture

Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://ilacoma.cs.uiuc.edu

I-acoma

e group SNU, Sep 2011 ILLINOIS

The Multicore Era

« Goals: performance, energy-efficiency & programmability

« What is a Programmable Architecture?

— Attains high efficiency while relieving the programmer from
low-level tasks

— Helps minimize the chance of (parallel) programming errors

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 2

e group

The Bulk Multicore [CommACM 09]

General-purpose shared-memory multicore

* Novel scalable cache-coherence (signatures & chunks)
— Relieves programmer/runtime from managing shared data

« High-performance sequential memory consistency
— Provides a SW-friendly environment

« HW primitives for low-overhead program development & debugging
(data-race detection, deterministic replay, address disambiguation)
— Helps reduce the chance of parallel programming errors
— Overhead low enough to be “on” during production runs

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3

~~~. group



The Bulk Multicore

 |dea: Eliminate the commit of individual instructions at a time
e Mechanism:

— Processors continuously commit chunks of instructions at a
time (e.g. 5,000 dynamic instr)

— Chunks execute atomically and in isolation (using buffering
and undo)

— Memory effects of chunks summarized in HW signatures
— Chunks can be invisible to SW or generated by compiler

The Bulk
Multicore

« Advantages over current:
— Higher programmability
— Higher performance
— Simpler processor hardware

[= Josep Torrellas
'«95993& The BULK Multicore Architecture | LLI NOI S 4



Rest of the Talk

* The Bulk Multicore
* How it improves performance
* How it improves programmability

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3

~~~. group


Hardware Mechanism: Signatures [ISCA06]

« Hardware accumulates the addresses read/written in signatures

| Address
F'err;ute_
|
V2 U N
s 20 MO
O - 2"_I
T T] senan
1 L

* Read and Write signatures
« Summarize the footprint of a Chunk of code

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS °©

e group

Signature Operations In Hardware

s, &, S . A

Address Signature

Encode

| |
N

= 7
"TIF
aes

S, N 5, 1 O\ TF

’——\

- . —~
= Inexpensive ~

(Operations on
§=07 Groups of

|- Josep Torrellas N~ Addresses ~
LEEQQQ% The BULK Multicore Architecture - —p_!-n:fl N’OIS 7

VAVAVAY,

Executing Chunks Atomically & In Isolation: Simple!

Thread 0 Thread 1
| Id X |
Wo=sig(B,C) |s¢ B | Chunk Id B
Ro=sig(X,Y) |t ¢ st T_|W1 = sig(T)
o commit |2 ¥ Wo 19 © IR =sigl®,0
—[(WoN R1)v (WoN W)

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 8

e group

Chunk Operation + Signatures: Bulk [ISCA07]

« Execute each chunk atomically and in isolation
« (Distributed) arbiter ensures a total order of chunk commits

........... RITCITLLLLES : st A _
StA L [StA: ldCci == ==
ildCi EStC: aD: el N e
stCi [IdD: istXi T\ Logical
istD: I StX. st C picture
1 StD;

« Supports Sequential Consistency [Lamport79].
—High performance: Instructions are fully reordered by HW
Loads and stores make it in any order to the sig
Fences are NOOPS
—Low HW complexity: Need not snoop Id buffer for consistency
I-acoma ILLINOIS 9

e group

Summary: Benefits of Bulk Multicore

« Gains in HW simplicity, performance, and programmability

* Hardware simplicity:
— Memory consistency support moved away from core
— Toward commodity cores

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 10

e group

Rest of the Talk

* The Bulk Multicore
* How it improves performance
* How it improves programmability

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS ™

~~~. group



High Performance

« HW reorders accesses heavily (intra- and inter-chunk)
« If chunks driven by compiler: Novel compiler optimizations

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 1

e group



BulkCompiler: Compiler for Bulk Multicore [MICRO-09]

 Takes code with synchronization operations (locks, barriers.. )
» Adds instructions to drive chunking
*beginAtomic PC
- Starts new chunk
-Takes as argument the PC of the Safe-Version of code
* endAtomic
- Finishes the current chunk

I
« =»Atomicity allows compiler to: :
| = Optimize the code within chunks !
: =>» Ignore memory model restrictions !

3
. Josep Torrellas
I-acoma The BULK Multicore Architecture E ILLINOIS

e group



Example of BulkCompiler Optimization

* SUM, X, y are shared variables

/for(...) {

acquire
sum +=x +y;
release

)
C

N

)

=

ﬁaeginAtomic; \
for(...){
acquire
sum +=x +;
release

Y
\.endAtomic;

=

ﬁ)eginAtomic; \

inttemp =x +;

for(...) {

sum += temp;

}

endAtomic;

{ )

« HW guarantees atomic execution (no synchs needed)

«Compiler allowed to perform arbitrary optimizations inside
* If another thread accesses sum, X, y
- HW detects failed speculation, squashes, and retries chunk

I-acoma

e group

Josep Torrellas

The BULK Multicore Architecture

BHiiiNors



More Complete Transformation

» Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

beginAtomic beginA tomic
acquire M1 while (M1 == taken) {} * Remove acquire / release
@ * Insert plain spins on lock variables
release M1 - Lock may be owned
E> @ - Owner will squash you on release

acquire M2 while (M2 = taken) {} « Optimize and reorder the code

release M2

endAtomic endAtomic

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS

e group



More Complete Transformation

 Low-contention critical sections:

- Group many of them in same Atomic Region (AR)
beginAtomic
achII‘e Ml beginAtomic * Remove acquire / release

while (M1 ==1aken) {} . |ngert plain spins on lock variables
while (M2 == taken) {}
release Ml

- Lock may be owned
E> 4'% - Owner will squash you on release
acqml’e M2  Optimize and reorder the code

endAtomlc

release M2

Gs )

endA tomic

e Josep Torrellas :
i-atbma The BULK Multicore Architecture ILLINOIS

e group



More Complete Transformation

 Low-contention critical sections:

- Group many of them in same Atomic Region (AR)
beginAtomic
achII‘e Ml beginAtomic * Remove acquire / release

while (M1 ==1aken) {} . |ngert plain spins on lock variables
while (M2 == taken) {}
release Ml

- Lock may be owned
E> 4'% - Owner will squash you on release
acqml’e M2  Optimize and reorder the code

endAtomlc
releaseMZ
I .
I - - . I
endAtomic ! =» No conventional compiler can do this i
|

e Josep Torrellas :
i-atoma The BULK Multicore Architecture ILLINOIS

e group



Rest of the Talk

* The Bulk Multicore
* How it improves performance
* How it improves programmability

e Josep Torrellas .
I-acoma The BULK Multicore Architecture ILLINOIS 18

~~~. group


High programmability

* Invisible to the programming model/language
« Supports Sequential Consistency (SC)
* Software correctness tools assume SC
 Enables novel always-on debugging techniques
* Only keep per-chunk state, not per-load/store state
* Deterministic replay of parallel programs with no log
* Data race detection at production-run speed

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS ™

~~~. group



Concept: Deterministic Replay of MP Execution

* During Execution: HW records into a log the order of
dependences between threads

« The log has captured the “interleaving” of threads
* During Replay: Re-run the program
— Enforcing the dependence orders in the log

i-acoma Josep Torrellas ILLINOIS 20

~~~ group The BULK Multicore Architecture


Conventional Schemes

I-acoma

e group

P1 P2
n1 Wa\ P2's Log
2 Wb Ra | m1 P1 n1 m1
\ P1 n2 m2

Wb | m2

« Potentially large logs

Josep Torrellas

The BULK Multicore Architecture ILLINOIS 2

Bulk: Log Necessary is Minuscule [ISCA08]

* During Execution:
— Commit the instructions in chunks, not individually

chunk

F_’1
Wa
Wb

_Rc

I-acoma

e group

\

P2 Combined Log
of all Procs:
P1
P2
Wa |] Pi
chunk
Rb 2
we If we fix the chunk commit interleaving:

Combined Log = NIL

Josep Torrellas
The BULK Multicore Architecture

BHiLiNors 2

Data Race Detection at Production-Run Speed [ISCA03]

Data race: Two threads access same data without synch

| |

Lock L

Lock L o
0¢ . |f we detect communication between...

Unlock L ™ — Ordered chunks: not a data race
- — Unordered chunks: data race

Unlock L "y

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS =

~~~. group



Extension: Signatures Visible to SW through ISA

« Enables pervasive monitoring [ISCAO04]
« Support numerous watchpoints for free

Thread

instr

Watch(addr, usr_monitor)

instr

= ..

I-acoma

e group

usr_monitor(Addr){

Josep Torrellas
The BULK Multicore Architecture

| Address

.
ﬁ_&. DR Y
l . \“‘Ju—,
—1

L

BHiLiNors 2



Extension: Signatures Visible to SW through ISA

« Enables pervasive monitoring [ISCAO04]
« Support numerous watchpoints for free
« Enables novel compiler optimizations [ASPLOS08]
* Function memoization
 Loop-invariant code motion
« Enables debugging data races & concurrency bugs [MICRO 09]

Many novel programming/compiler/tool opportunities

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS %

e group



Summary: The Bulk Multicore

« 128+ cores/chip, coherent shared-memory (perhaps in groups)

« Simple HW with commodity cores
— Memory consistency checks moved away from the core

* High performance shared-memory programming model
— Execution in chunks, possibly driven by the compiler
— Signatures for disambiguation, cache coherence, and compiler opts

* High programmability:
— Sequential consistency
— Sophisticated always-on development support
» Deterministic replay of parallel programs with no log (DeLorean)
« Data race detection for production runs (ReEnact)
* Pervasive program monitoring (iWatcher)
» Using signatures/hashes to detect races (SigRace, Light64)

e Josep Torrellas :
5’5993% The BULK Multicore Architecture I LLI NOI S 26



Acknowledgments

I-acoma

e group

Key contributors:

Luis Ceze

Calin Cascaval
James Tuck
Pablo Montesinos
Wonsun Ahn
Milos Prvulovic
Pin Zhou

YY Zhou

Jose Martinez

Josep Torrellas
The BULK Multicore Architecture

HiLinots 7



The Bulk Multicore Architecture
for Programmability

Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://ilacoma.cs.uiuc.edu

I-acoma

~ = group ILLINOIS



Pervasive Monitoring:
Attaching a Monitor Function to Address

« Watch memory location
« Trigger monitoring function when it is accessed

Thread
: usr_monitor(Addr){ Main
Instr Program
Watch(addr, usr_monitor) -
instr
instr | *p=
instr | Address
*p = Perr;ute_
instr | .
instr i L1
. I M
instr 4‘3\_--. N
| | \ l ' | Signature Rest of Monitoring
— I Program Function
e Josep Torrellas -
'«95993& The BULK Multicore Architecture I LLI NOIS 29



Chunk Operation + Signatures: Bulk [ISCA07]

» Execute each chunk atomically and in isolation
« (Distributed) arbiter ensures a total order of chunk commits

...................... st A
ldct fstc s

stCi [IdD: istXi o T\ Logical
iStDi fSLX st C i picture

« Supports Sequential Consistency [Lamport79]:
—Low hardware complexity: Need not snoop |d buffer for consistency
—High performance: Instructions are fully reordered by HW
loads and stores make it in any order to the sig

_ Fences are NOOPS
I-acoma ILLINOIS 30

e group



Rest of the Talk

* The Bulk Multicore

* How it improves performance

* How it improves programmability

« Extension: Signatures visible to SW through ISA

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3!

~~~. group


Signatures & Hashes Visible to SW through ISA

« Enables pervasive monitoring [ISCAO04]
« Support numerous watchpoints for free
« Enables novel compiler optimizations [ASPLOS08]
* Function memoization
 Loop-invariant code motion
« Enables debugging data races & concurrency bugs [MICRO 09]

Many novel programming/compiler/tool opportunities

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3

e group

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig
bcollect Siqg
1d r0, X

1d r1l, Y
st r3, Z

-ecnllect Sig

e Josep Torrellas :
5’5993& The BULK Multicore Architecture I LLI NOI S 33

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig

bcollect Sig Hardwars Insarta refersnce
Teee addressas Into signaturs

1d r0, X

l1d rl, ¥ Collection

st r3, Z

) ecollect Sig

e Josep Torrellas :
'«95993& The BULK Multicore Architecture I LLI NOI S 34

Instruction: Begin/End Disambiguation Against Sig

bdisamb Sig

st r4, A
l1d r5, B
st ré, C

edisamb Sig

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3

e group

Instruction: Begin/End Disambiguation Against Sig

Sig
bdisamb Sig Hardware tests for conflicts XY, Z
- with signature reglster
st r4, A
'd 25 B Disambiguation _ /N
st ré, C \x

edisamb Sig

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 3¢

e group

Optimization: Function Memoization

» Goal: skip the execution of functions

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS

e group

Example Opt: Function Memoization

« (Goal: skip the execution of functions whose outputs are known

{ foo (x) ; foo (x) ; Colleotilon EI'
— y - = == y
z = .. = =
if{oconfliot
' foo(x) ; :E:M:I ;u ,

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 38

e group

Example Opt: Loop-Invariant Code Motion

%“

while(...) {

T Risambig. Wr
. = <expr>
}
- Josep Torrellas .
LS, The BULK Multicore Architecture [LLINOIS 3¢

Example Opt: Loop-Invariant Code Motion

checkpoint ()
reg = <expr>
while(...) { while(...) {

<expr> ... = reg

} :
if (conflict)

rollback ()
<original loop>

e Josep Torrellas :
I-acoma The BULK Multicore Architecture ILLINOIS 0

e group

Different Synchronization Ops

Lock L

Lock L Wait F
Unlock L SetF % Barrier
Barrier :
Lock Flag Barrier

- Josep Torrellas .
LS, The BULK Multicore Architecture [ILLINOIS 4

