
Designing Multicores for Programmability:
The Bulk Multicore ArchitectureThe Bulk Multicore Architecture

Josep Torrellas
D f C S iDepartment of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edup

SNU, Sep 2011

The Multicore Era

• Goals: performance, energy-efficiency & programmability

• What is a Programmable Architecture?
– Attains high efficiency while relieving the programmer from tta s g e c e cy e e e g t e p og a e o

low-level tasks
– Helps minimize the chance of (parallel) programming errors

Josep Torrellas
The BULK Multicore Architecture 2

The Bulk Multicore [CommACM 09]

General-purpose shared-memory multicore

• Novel scalable cache-coherence (signatures & chunks)
– Relieves programmer/runtime from managing shared data

Hi h f ti l i t• High-performance sequential memory consistency
– Provides a SW-friendly environment

• HW primitives for low-overhead program development & debugging
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runsOverhead low enough to be on during production runs

Josep Torrellas
The BULK Multicore Architecture 3

The Bulk Multicore

• Idea: Eliminate the commit of individual instructions at a time
• Mechanism:

– Processors continuously commit chunks of instructions at a
time (e.g. 5,000 dynamic instr)

– Chunks execute atomically and in isolation (using buffering
d d)and undo)

– Memory effects of chunks summarized in HW signatures
– Chunks can be invisible to SW or generated by compilerg y p

• Advantages over current:
Higher programmability

The Bulk
Multicore– Higher programmability

– Higher performance
– Simpler processor hardware

Multicore

Josep Torrellas
The BULK Multicore Architecture 4

Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability

Josep Torrellas
The BULK Multicore Architecture 5

Hardware Mechanism: Signatures [ISCA06]

• Hardware accumulates the addresses read/written in signatures

• Read and Write signatures
• Summarize the footprint of a Chunk of code

Josep Torrellas
The BULK Multicore Architecture 6

Signature Operations In Hardware

Josep Torrellas
The BULK Multicore Architecture 7

Executing Chunks Atomically & In Isolation: Simple!

Thread 0 Thread 1

W i ()
ld X

commit

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

st B
st C
ld Y

Chunk ld B
st T
ld Ccommit
(W0 ∩ R1) ∨ (W0 ∩ W1)

Josep Torrellas
The BULK Multicore Architecture 8

Chunk Operation + Signatures: Bulk [ISCA07]

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

st A

P1

st A

P2 P1 P2 P3 PN...st A
st C
st A
ld C

st D

ld C
st C ld D

st X

st C

Mem

Logical
picture

ld D
st X

ld C

st D
st C

• Supports Sequential Consistency [Lamport79]:
High performance:

Memst D

Instructions are fully reordered by HW– High performance: Instructions are fully reordered by HW
Loads and stores make it in any order to the sig
Fences are NOOPS

Josep Torrellas
The BULK Multicore Architecture 9

– Low HW complexity: Need not snoop ld buffer for consistency

Summary: Benefits of Bulk Multicore

• Gains in HW simplicity, performance, and programmability

• Hardware simplicity:
– Memory consistency support moved away from core
– Toward commodity cores

Josep Torrellas
The BULK Multicore Architecture 10

Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability

Josep Torrellas
The BULK Multicore Architecture 11

High Performance

• HW reorders accesses heavily (intra- and inter-chunk)
• If chunks driven by compiler: Novel compiler optimizationsIf chunks driven by compiler: Novel compiler optimizations

Josep Torrellas
The BULK Multicore Architecture 12

BulkCompiler: Compiler for Bulk Multicore [MICRO-09]

• Takes code with synchronization operations (locks, barriers..)
• Adds instructions to drive chunking

•beginAtomic PC
- Starts new chunk- Starts new chunk
-Takes as argument the PC of the Safe-Version of code

• endAtomic
- Finishes the current chunk

Atomicity allows compiler to:
Optimize the code within chunks
Ignore memory model restrictions

Josep Torrellas
The BULK Multicore Architecture

13

Ignore memory model restrictions

Example of BulkCompiler Optimization

• sum, x, y are shared variables

b i At i b i At ifor(…) {
acquire
sum += x + y;

beginAtomic;
for(…) {
acquire
sum += x + y;

beginAtomic;
int temp = x + y;
for(…) {
sum += temp;release

}

sum += x + y;
release

}
endAtomic;

sum += temp;
}
endAtomic;

endAtomic;

• HW guarantees atomic execution (no synchs needed)
•Compiler allowed to perform arbitrary optimizations inside
• If another thread accesses sum, x, y

- HW detects failed speculation, squashes, and retries chunk

Josep Torrellas
The BULK Multicore Architecture 14

p q

More Complete Transformation

• Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

• Remove acquire / releaseRemove acquire / release
• Insert plain spins on lock variables

- Lock may be owned
- Owner will squash you on release

• Optimize and reorder the code

Josep Torrellas
The BULK Multicore Architecture

More Complete Transformation

• Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

• Remove acquire / releaseRemove acquire / release
• Insert plain spins on lock variables

- Lock may be owned
- Owner will squash you on release

• Optimize and reorder the code

Josep Torrellas
The BULK Multicore Architecture

16

More Complete Transformation

• Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

• Remove acquire / releaseRemove acquire / release
• Insert plain spins on lock variables

- Lock may be owned
- Owner will squash you on release

• Optimize and reorder the code

No conventional compiler can do this

Josep Torrellas
The BULK Multicore Architecture

17

p

Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability

Josep Torrellas
The BULK Multicore Architecture 18

High programmability

• Invisible to the programming model/languageInvisible to the programming model/language
• Supports Sequential Consistency (SC)

* Software correctness tools assume SC
• Enables novel always-on debugging techniques

* Only keep per-chunk state, not per-load/store state
* Deterministic replay of parallel programs with no log Deterministic replay of parallel programs with no log
* Data race detection at production-run speed

Josep Torrellas
The BULK Multicore Architecture 19

Concept: Deterministic Replay of MP Execution

• During Execution: HW records into a log the order of
dependences between threadsdependences between threads

• The log has captured the “interleaving” of threads
• During Replay: Re-run the programg p y p g

– Enforcing the dependence orders in the log

Josep Torrellas
The BULK Multicore Architecture 20

Conventional Schemes

P1 P2P1

Wa

P2

n1 P2’s Log

P1 n1 m1
Wb Ra

Wb

n2 m1

m2

P1 n1 m1

P1 n2 m2

Potentiall large logs• Potentially large logs

Josep Torrellas
The BULK Multicore Architecture 21

Bulk: Log Necessary is Minuscule [ISCA08]

• During Execution:

P1 P2

– Commit the instructions in chunks, not individually

P1
Wa
Wb

P2

Rc

chunk
1

Combined Log
of all Procs:

P1
Rc

Rb
chunk

2

Wa
P2
Pi

Wc
2

Combined Log = NIL

If we fix the chunk commit interleaving:

Josep Torrellas
The BULK Multicore Architecture 22

Data Race Detection at Production-Run Speed [ISCA03]

Data race: Two threads access same data without synch

Unlock L

Lock L
Lock L • If we detect communication between…

– Ordered chunks: not a data race

Unlock L
– Unordered chunks: data race

Josep Torrellas
The BULK Multicore Architecture 23

Extension: Signatures Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

it (Add){
Thread

usr_monitor(Addr){
…..

}Watch(addr, usr_monitor)

instr

*p = ...

instr

Josep Torrellas
The BULK Multicore Architecture 24

Extension: Signatures Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

• Enables novel compiler optimizations [ASPLOS08]
• Function memoizationFunction memoization
• Loop-invariant code motion

• Enables debugging data races & concurrency bugs [MICRO 09]

M l i / il /t l t itiMany novel programming/compiler/tool opportunities

Josep Torrellas
The BULK Multicore Architecture 25

Summary: The Bulk Multicore

• 128+ cores/chip, coherent shared-memory (perhaps in groups)

• Simple HW with commodity cores
– Memory consistency checks moved away from the core

• High performance shared-memory programming model
– Execution in chunks, possibly driven by the compiler
– Signatures for disambiguation, cache coherence, and compiler opts

• High programmability:
– Sequential consistency
– Sophisticated always-on development support– Sophisticated always-on development support

• Deterministic replay of parallel programs with no log (DeLorean)
• Data race detection for production runs (ReEnact)
• Pervasive program monitoring (iWatcher)

Josep Torrellas
The BULK Multicore Architecture 26

p g g ()
• Using signatures/hashes to detect races (SigRace, Light64)

Acknowledgments

Key contributors:
• Luis Ceze
• Calin Cascaval
• James Tuck
• Pablo Montesinos• Pablo Montesinos
• Wonsun Ahn
• Milos Prvulovic
• Pin Zhou
• YY Zhou
• Jose Martinez

Josep Torrellas
The BULK Multicore Architecture 27

The Bulk Multicore Architecture
f P bilitfor Programmability

Josep Torrellas
D f C S iDepartment of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edup

Pervasive Monitoring:
Attaching a Monitor Function to Address

• Watch memory location
• Trigger monitoring function when it is accessed

instr usr_monitor(Addr){

• Trigger monitoring function when it is accessed

Main

Thread

instr

instr
instr

Watch(addr, usr_monitor)

(){
…..

}

Program

*p=

*p = ...
instr

instr
instr

p=

instr
instr

Rest of Monitoring
FunctionProgram

Josep Torrellas
The BULK Multicore Architecture 29

Chunk Operation + Signatures: Bulk [ISCA07]

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

t A

P1

st A

P2

()

P1 P2 P3 PN...st A
st C
st A

C

st D

st A
ld C
st C ld D

st X

st A
st C

M

Logical
picture

ld D
st X

ld C

t D
st C

• Supports Sequential Consistency [Lamport79]:

Memst D

– Low hardware complexity:
– High performance:

Need not snoop ld buffer for consistency
Instructions are fully reordered by HW
loads and stores make it in any order to the sig

Josep Torrellas
The BULK Multicore Architecture 30

loads and stores make it in any order to the sig
Fences are NOOPS

Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability
• Extension: Signatures visible to SW through ISAg g

Josep Torrellas
The BULK Multicore Architecture 31

Signatures & Hashes Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

• Enables novel compiler optimizations [ASPLOS08]
• Function memoizationFunction memoization
• Loop-invariant code motion

• Enables debugging data races & concurrency bugs [MICRO 09]

M l i / il /t l t itiMany novel programming/compiler/tool opportunities

Josep Torrellas
The BULK Multicore Architecture 32

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig

Josep Torrellas
The BULK Multicore Architecture 33

Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig

Josep Torrellas
The BULK Multicore Architecture 34

Instruction: Begin/End Disambiguation Against Sig

Josep Torrellas
The BULK Multicore Architecture 35

Instruction: Begin/End Disambiguation Against Sig

Josep Torrellas
The BULK Multicore Architecture 36

Optimization: Function Memoization

• Goal: skip the execution of functions

Josep Torrellas
The BULK Multicore Architecture 37

Example Opt: Function Memoization

• Goal: skip the execution of functions whose outputs are known

Josep Torrellas
The BULK Multicore Architecture 38

Example Opt: Loop-Invariant Code Motion

Josep Torrellas
The BULK Multicore Architecture 39

Example Opt: Loop-Invariant Code Motion

Josep Torrellas
The BULK Multicore Architecture 40

Different Synchronization Ops

Lock L
Lock L Wait F

Barrier
Unlock L

Unlock L

Set F

Barrier

Barrier

Unlock L

Lock Flag Barrier

Josep Torrellas
The BULK Multicore Architecture 41

