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The Multicore Era

• Goals: performance, energy-efficiency & programmability

• What is a Programmable Architecture?
– Attains high efficiency while relieving the programmer from tta s g e c e cy e e e g t e p og a e o

low-level tasks
– Helps minimize the chance of (parallel) programming errors
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The Bulk Multicore [CommACM 09]

General-purpose shared-memory multicore

• Novel scalable cache-coherence (signatures & chunks)
– Relieves programmer/runtime from managing shared data

Hi h f ti l i t• High-performance sequential memory consistency
– Provides a SW-friendly environment

• HW primitives for low-overhead program development & debugging
(data-race detection, deterministic replay, address disambiguation)
– Helps reduce the chance of parallel programming errors
– Overhead low enough to be “on” during production runsOverhead low enough to be on  during production runs
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The Bulk Multicore  

• Idea: Eliminate the commit of individual instructions at a time
• Mechanism: 

– Processors continuously commit chunks of instructions at a 
time (e.g. 5,000 dynamic instr)

– Chunks execute atomically and in isolation (using buffering 
d d )and undo)

– Memory effects of chunks summarized in HW signatures
– Chunks can be invisible to SW or generated by compilerg y p

• Advantages over current:
Higher programmability

The Bulk 
Multicore– Higher programmability

– Higher performance
– Simpler processor hardware

Multicore
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Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability
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Hardware Mechanism: Signatures [ISCA06]

• Hardware accumulates the addresses read/written in signatures

• Read and Write signatures
• Summarize the footprint of a Chunk of code
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Signature Operations In Hardware
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Executing Chunks Atomically & In Isolation: Simple!

Thread 0 Thread 1

W i ( )
ld X

commit

W0 = sig(B,C)
R0 = sig(X,Y)

W1 = sig(T)
R1 = sig(B,C)

st B
st C
ld Y

Chunk ld B
st T
ld Ccommit
(W0 ∩ R1 ) ∨ (W0 ∩ W1)
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Chunk Operation + Signatures: Bulk [ISCA07]

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

st A

P1

st A

P2 P1 P2 P3 PN...st A
st C
st A
ld C

st D

ld C
st C ld D

st X

st C

Mem

Logical 
picture

ld D
st X

ld C

st D
st C

• Supports Sequential Consistency [Lamport79]:
High performance:

Memst D

Instructions are fully reordered by HW– High performance: Instructions are fully reordered by HW
Loads and stores make it in any order to the sig
Fences are NOOPS
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– Low HW complexity: Need not snoop ld buffer for consistency



Summary: Benefits of Bulk Multicore

• Gains in HW simplicity, performance, and programmability 

• Hardware simplicity:
– Memory consistency support moved away from core
– Toward commodity cores
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Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability
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High Performance 

• HW reorders accesses heavily (intra- and inter-chunk)
• If chunks driven by compiler: Novel compiler optimizationsIf chunks driven by compiler: Novel compiler optimizations
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BulkCompiler: Compiler for Bulk Multicore [MICRO-09]

• Takes code with synchronization operations (locks, barriers.. ) 
• Adds instructions to drive chunking 

•beginAtomic PC
- Starts new chunk- Starts new chunk
-Takes as argument the PC of the Safe-Version of code

• endAtomic
- Finishes the current chunk

Atomicity allows compiler to:
Optimize the code within chunks
Ignore memory model restrictions

Josep Torrellas
The BULK Multicore Architecture

13

Ignore memory model restrictions   



Example of BulkCompiler Optimization

• sum, x, y are shared variables

b i At i b i At ifor(…) {
acquire
sum += x + y;

beginAtomic;
for(…) {
acquire
sum += x + y;

beginAtomic;
int temp = x + y; 
for(…) {
sum += temp;release 

}

sum += x + y;
release 

}
endAtomic;

sum += temp; 
}
endAtomic;

endAtomic;

• HW guarantees atomic execution (no synchs needed)
•Compiler allowed to perform arbitrary optimizations inside
• If another thread accesses sum, x, y

- HW detects failed speculation, squashes, and retries chunk
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More Complete Transformation

• Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

• Remove acquire / releaseRemove acquire / release 
• Insert plain spins on lock variables

- Lock may be owned
- Owner will squash you on release

• Optimize and reorder the code
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More Complete Transformation

• Low-contention critical sections:
- Group many of them in same Atomic Region (AR)

• Remove acquire / releaseRemove acquire / release 
• Insert plain spins on lock variables

- Lock may be owned
- Owner will squash you on release

• Optimize and reorder the code

No conventional compiler can do this
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Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability
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High programmability

• Invisible to the programming model/languageInvisible to the programming model/language
• Supports Sequential Consistency (SC)

* Software correctness tools assume SC
• Enables novel always-on debugging techniques

* Only keep per-chunk state, not per-load/store state
* Deterministic replay of parallel programs with no log Deterministic replay of parallel programs with no log
* Data race detection at production-run speed
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Concept: Deterministic Replay of  MP Execution

• During Execution: HW records into a log the order of 
dependences between threadsdependences between threads

• The log has captured the “interleaving” of threads
• During Replay: Re-run the programg p y p g

– Enforcing the dependence orders in the log
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Conventional Schemes

P1 P2P1

Wa

P2

n1 P2’s  Log

P1 n1 m1
Wb Ra

Wb

n2 m1

m2

P1   n1   m1

P1   n2   m2

Potentiall large logs• Potentially large logs 
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Bulk: Log Necessary is Minuscule [ISCA08]

• During Execution:

P1 P2

– Commit the instructions in chunks, not individually

P1
Wa
Wb

P2

Rc

chunk
1

Combined  Log 
of all Procs:

P1
Rc

Rb
chunk

2

Wa
P2
Pi

Wc
2

Combined Log = NIL

If we fix the chunk commit interleaving:
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Data Race Detection at Production-Run Speed [ISCA03]

Data race: Two threads access same data without synch

Unlock L

Lock L
Lock L • If we detect communication between…

– Ordered chunks: not a data race

Unlock L
– Unordered chunks: data race 
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Extension: Signatures Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

it (Add ){
Thread

usr_monitor(Addr){
…..

}Watch(addr, usr_monitor)

instr

*p =  ... 

instr
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Extension: Signatures Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

• Enables novel compiler optimizations [ASPLOS08]
• Function memoizationFunction memoization
• Loop-invariant code motion

• Enables debugging data races & concurrency bugs [MICRO 09]

M l i / il /t l t itiMany novel programming/compiler/tool opportunities
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Summary: The Bulk Multicore

• 128+ cores/chip, coherent shared-memory (perhaps in groups)

• Simple HW with commodity cores
– Memory consistency checks moved away from the core

• High performance shared-memory programming model
– Execution in chunks, possibly driven by the compiler
– Signatures for disambiguation, cache coherence, and compiler opts 

• High programmability: 
– Sequential consistency
– Sophisticated always-on development support– Sophisticated always-on development support

• Deterministic replay of parallel programs with no log (DeLorean)
• Data race detection for production runs (ReEnact)
• Pervasive program monitoring (iWatcher)
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• Using signatures/hashes to detect races (SigRace, Light64)
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Pervasive Monitoring:
Attaching a Monitor Function to Address

• Watch memory location
• Trigger monitoring function when it is accessed

instr usr_monitor(Addr){

• Trigger monitoring function when it is accessed

Main

Thread

instr

instr
instr

Watch(addr, usr_monitor)

( ){
…..

}

Program

*p=

*p =  ... 
instr

instr
instr

p=

instr
instr

Rest of Monitoring
FunctionProgram
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Chunk Operation + Signatures: Bulk [ISCA07]

• Execute each chunk atomically and in isolation
• (Distributed) arbiter ensures a total order of chunk commits

t A

P1

st A

P2

( )

P1 P2 P3 PN...st A
st C
st A

C

st D

st A
ld C
st C ld D

st X

st A
st C

M

Logical 
picture

ld D
st X

ld C

t D
st C

• Supports Sequential Consistency [Lamport79]:

Memst D

– Low hardware complexity:
– High performance:

Need not snoop ld buffer for consistency
Instructions are fully reordered by HW
loads and stores make it in any order to the sig
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Rest of the Talk

• The Bulk Multicore
• How it improves performance
• How it improves programmability
• Extension: Signatures visible to SW through ISAg g
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Signatures & Hashes Visible to SW through ISA

• Enables pervasive monitoring [ISCA04]
• Support numerous watchpoints for free

• Enables novel compiler optimizations [ASPLOS08]
• Function memoizationFunction memoization
• Loop-invariant code motion

• Enables debugging data races & concurrency bugs [MICRO 09]

M l i / il /t l t itiMany novel programming/compiler/tool opportunities
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Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig
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Enabling Novel Compiler Optimizations

New instruction: Begin/End collecting addresses into sig
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Instruction: Begin/End Disambiguation Against Sig

Josep Torrellas
The BULK Multicore Architecture 35



Instruction: Begin/End Disambiguation Against Sig

Josep Torrellas
The BULK Multicore Architecture 36



Optimization: Function Memoization

• Goal: skip the execution of functions
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Example Opt: Function Memoization

• Goal: skip the execution of functions whose outputs are known
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Example Opt: Loop-Invariant Code Motion
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Example Opt: Loop-Invariant Code Motion
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Different Synchronization Ops

Lock L
Lock L Wait F

Barrier
Unlock L

Unlock L

Set F

Barrier

Barrier

Unlock L

Lock Flag Barrier

Josep Torrellas
The BULK Multicore Architecture 41


